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 Recent advances in the neuromorphic operation of atomic switches as indi-
vidual synapse-like devices demonstrate the ability to process information 
with both short-term and long-term memorization in a single two terminal 
junction. Here it is shown that atomic switches can be self-assembled within 
a highly interconnected network of silver nanowires similar in structure to 
Turing’s “B-Type unorganized machine”, originally proposed as a randomly 
connected network of NAND logic gates. In these experimental embodi-
ments, complex networks of coupled atomic switches exhibit emergent 
criticality similar in nature to previously reported electrical activity of bio-
logical brains and neuron assemblies. Rapid fl uctuations in electrical con-
ductance display metastability and power law scaling of temporal correlation 
lengths that are attributed to dynamic reorganization of the interconnected 
electro-ionic network resulting from induced non-equilibrium thermodynamic 
instabilities. These collective properties indicate a potential utility for real-
time, multi-input processing of distributed sensory data through reservoir 
computation. We propose these highly coupled, nonlinear electronic networks 
as an implementable hardware-based platform toward the creation of physi-
cally intelligent machines. 
  1. Introduction 

 Modern state-of-the-art computers are the product of over half 
a century spent refi ning implementations of Turing’s auto-
matic machine (TAM) [  1  ]  using Von Neumann’s computational 
architecture. [  2  ]  The TAM is the principal theoretical framework 
for computation using sequential logical operations on single-
purpose hardware consisting of an infi nite tape of symbols, a 
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read/write head, and a control mechanism 
that acts based on a transition table or 
instruction sheet. Von Neumann’s intro-
duction of the concept of memory into the 
computer architecture provided a blueprint 
for the physical realization of multifunc-
tional TAM machines that utilize multiple 
stored programs via two main functional 
units – processors and memory. This fl ex-
ible control mechanism made the TAM 
truly universal in its capacity to complete 
any algorithmically defi ned task. 

 The von Neumann architecture has the 
principle advantage of clarity from the 
engineering perspective. Reduction in the 
physical size and increased areal density of 
electronic components directly scales up 
performance in terms of increased bytes 
of storage and processor cycles per second. 
The extension of this trend toward biologi-
cally inspired or artifi cially intelligent com-
putation has resulted in attempts to simu-
late every neuron in the mammalian cortex 
and to outperform human experts in games 
of strategy. [  3  ,  4  ]  These achievements, while 
impressive, are not readily scalable due to the basic constraints 
of the CMOS architecture, its associated methods of fabrication, 
and the limits of its operational mechanism. [  5  ]  Further, the req-
uisite passage of program instructions and data between proc-
essor and memory has evolved as a speed-limiting step known 
as the “von Neumann bottleneck” (vNB) [  6  ]  ( Figure    1  a), which 
results in idle processor cycles and power dissipation as infor-
mation is simply being transferred, not processed. In combi-
nation, these factors generate a computational architecture that 
consumes orders of magnitude more space and energy than 
intelligent biological systems.  

 While current state of the art approaches to computation 
represent tremendous progress in performance and effi ciency 
versus their historical counterparts, computer scientists have 
drawn inspiration from biology in an effort to develop compu-
tational strategies that are able to match the capabilities of bio-
logical neural networks (BNN). Remarkably, such concepts were 
proposed over sixty years ago as Turing’s “B-Type unorganized 
machine (TBTu)”, [  7  ]  and have been subsequently popularized 
by Rosenblatt’s perceptron, recurrent neural networks, and res-
ervoir computing. [  8–15  ]  These bio-inspired designs are generally 
associated with the notion of “connectionism”. Connectionist 
1wileyonlinelibrary.com
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      Figure  1 .     Comparison of computation using Turing automatic machines (TAM) and Turing 
B-Type unorganized machines (TBTu)/Complex Network Reservoirs (CNR). (a): Conventional 
TAM computation suffers from the intrinsic von Neumann bottleneck (vNB), as instructions 
and data must be shuttled back and forth between memory and processor cores. (b): TBTu/
CNR computation transforms simultaneous input streams into a higher dimensional forms/
patters that are converted to intelligible outputs by a linear classifi er, which can be readily 
trained to detect various categories of CNR behavior. (c) As calculations proceed sequentially 
in TAM (yellow fi gures), new input is delivered to memory (blue and green fi gures, respectively). 
Earlier processes are unable to produce desired output due to outdated instructions and must 
idle in the vNB (red fi gures). Upon the arrival of new instructions from memory, calculations 
can resume and proceed towards the output (green fi gure on third fl oor). (d) In TBTu/CNR 
computation, inputs combine simultaneously to fi ll the waiting elevator. This process is more 
time consuming (it is a slow elevator!), but upon arriving at the third fl oor (output), they have 
undergone a complex transformation, having spent time interacting to create a new state of 
the system.  
theories are based on complex networks composed of simple 
units, which, as a whole, produce emergent behavior not found 
or associated with any particular unit. [  16  ]  What constitutes a 
“complex system” is diffi cult to defi ne precisely. However, exten-
sive studies of complex, real-world networks have revealed the 
importance of both structural topology and internal dynamics. 
Various models of connectivity and interaction have been 
shown to accurately describe phenomena ranging from rela-
tionships between corporate directors to the backbone of the 
Internet. [  17  ]  

 To date, artifi cial realization of connectionist architectures 
has been limited by the capacity to fabricate robust inter-
connects between electronic components in a cost-effi cient 
manner, especially in designs utilizing unconventional topolo-
gies. Recent advances in nanoscale science and technology 
have enabled the direct self-assembly and integration of func-
tional circuit elements within the wiring scheme of nanoscale 
devices with the unique architectures. [  18–22  ]  Here, we utilize 
these concepts to construct a densely interconnected network 
of synapse-like memristive atomic switches using bottom up 
self-assembly. We fi nd that this system demonstrates some of 
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinwileyonlinelibrary.com
the emergent behaviors commonly observed 
in biological neural networks. [  23–27  ]  These 
complex atomic switch networks provide as a 
promising new direction for the development 
of functional TBTu-inspired neuromorphic 
computing devices, with specifi c implications 
toward physically implementable reservoir 
computation.   

 2. Computational Models 

 Building upon decades of inspired research 
based in the TAM/von Neumann computa-
tional paradigm, modern processors routinely 
include multiple cores and large memory 
caches to maximize effi ciency by parallelizing 
computations and reducing memory access 
times. In addition to physical limitations on 
component size and the vNB, leakage cur-
rents through gate dielectrics, programming 
challenges in parallel processing, and intoler-
ance to faulty elements have begun to impact 
performance. These obstacles provide strong 
motivation to develop and implement alter-
native computational strategies. To this end, 
numerous theories and proposals have been 
put forth toward biologically inspired, neuro-
morphic computing devices. [  28  ]  

 Biological neural networks utilize self-
confi guring, hardware-based architectures 
capable of dynamic topological alteration 
and function without the need for pre-
programming or an underlying software 
algorithm. These intrinsically nonlinear, 
complex systems demonstrate extraordinarily 
effi cient transmission of information and 
emergent behaviors commonly associated 
with intelligence such as associative memory, learning, and 
predictive capacity in non-deterministic environments. One 
related theoretical construct, the TBTu, was conceived of as a 
randomly interconnected network of nothing more than modi-
fi able NAND logic gates. Since NAND gates may be combined 
to perform any other logic function, Turing hypothesized that 
a suffi ciently large network could serve as a usable computer, 
capable of any TAM operation. [  1  ]  Moreover, he showed that its 
connections and operations could be trained over time to alter 
its behavior, in a similar fashion to that of a biological brain. 

 This concept has been applied in the fi elds of systems neuro-
science and artifi cial intelligence to form the basis of contempo-
rary research into artifi cial neural networks (ANN). These ANNs 
are typically implemented as software running on conventional 
TAM systems, mimicking information processing in natural 
systems. The earliest ANNs, commonly known as the “percep-
tron”, utilized a feed-forward design in which artifi cial neurons 
are connected by modifi able synaptic weights and can ‘learn’ to 
map input-output relationships according to any (mathematical) 
function. [  8  ]  The development of recurrent neural networks (RNN) 
enabled the inclusion of adaptive capacities through feedback 
heim Adv. Mater. 2011, XX, 1–8
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strategies. [  9  ]  The existence of cyclical connections makes the 
RNN a dynamical system, capable of sustaining internal 
activity in the absence of additional signals, not merely map-
ping input to output. However, basic RNN training strategies 
still involve the direct modifi cation of internal synaptic weights 
implemented abstractly using algorithms inspired by biological 
neural networks. In addition, ANNs are generally designed and 
optimized to perform specifi c computational tasks, occasionally 
utilizing purpose-built hardware for increased functionality. [  5  ]  
This enhanced performance comes at the expense of fl exibility, 
adaptability, and the capacity to synthesize multiple time-
varying input signals or to operate in a non-deterministic 
fashion–all hallmarks of biological neural systems. 

 Reservoir computation (RC) is a promising extension of 
RNNs towards more accurately modeling biological neural 
networks that has been successfully implemented in various 
engineering applications. [  12–15  ]  Instead of tracking and modi-
fying individual synaptic weights, the complex network of 
artifi cial neurons is treated as a a kind of “black box” which is 
dynamically modifi ed by the input and retains some (fading) 
memory of previous input signals. The complex network reser-
voir (CNR) acts to map these lower-dimensional input signals 
into a higher-dimensional space, represented by patterns in the 
state of the system and contains temporal information through 
integration of the input history. Poised between simply periodic 
and wildly unpredictable oscillations, the CNR operates at the 
edge of chaos. [  29  ]  

 This approach overcomes the challenge of training individual 
synaptic weights inside RNNs by not explicitly modifying them 
at all. Instead, a separate readout/output function is trained to 
examine the response of the reservoir, interpreting the spatio-
temporal patterns formed by the collective effect of the input 
signals and transforming this higher-dimensional informa-
tion into the desired output. Through appropriate training, RC 
methods are capable of simulating any Turing-type computa-
tional machine. Since the reservoir functions autonomously, 
multiple linear readout functions can be used simultaneously, 
thereby allowing the system to carry out multiple computational 
tasks on the same input stream in real time. [  12  ,  13  ]  

 While simulation and modeling efforts implemented on tra-
ditional computational architectures remain the general, near-
term focus of reservoir approaches, calls for the development 
of hardware-based CNR systems continue to form the basis 
for inquiry into a new paradigm of computational methods. 
Achieving these goals requires the development of physical sys-
tems whose properties mimic those of artifi cial, simulated res-
ervoirs as well as a means to harness the power of information-
rich output patterns they generate. We propose that the former 
can be achieved by applying the concept of Turing’s connec-
tionist networks to the fabrication of complex device architec-
tures consisting of highly interconnected, nonlinear electronic 
elements. A near-infi nite set of internal system states capable 
of receiving/storing information from parallel input streams is 
necessary to combine complex, dynamic signals into a single, 
higher-dimensional output. This property is characteristic of 
systems operating in a critical state, a hallmark of complex 
networks of nonlinear elements, where the divergence of the 
system correlation length in both space and time provides all 
these requisite characteristics. [  16  ,  30  ]    
© 2011 WILEY-VCH Verlag GAdv. Mater. 2011, XX, 1–8
 3. Complex Device Architectures 

 The structure and activity of the biological brain is intrinsi-
cally complex, comprised of billions of neurons interacting 
recurrently through trillions of synaptic interfaces by utilizing 
a range of signaling chemicals to produce excitatory and 
inhibitory changes in electro-ionic conductivity. This dynamic, 
evolving system produces emergent phenomena with which 
we are intimately familiar such as consciousness, intelligence, 
learning, and prediction. The realization of hardware-based 
neuromorphic networks requires the ability to fabricate highly 
interconnected, complex wiring architectures with integrated 
circuit elements whose nonlinear properties emulate those of 
biological neurons and synapses. 

 Fabrication of micro- and nanoscale devices with complex 
architectures, especially those with some degree of random 
structural topology, is diffi cult using solely lithographic 
methods due to challenges in forming robust intra- and inter-
device connections in a cost-effi cient manner. However, com-
bining directed and self-assembly of nanoscale building blocks 
into functional device components offers a promising route 
to creating intricate patterns of nanoscale components. To 
create operable devices based on nanoscale architectures, two 
basic issues must be addressed: which materials to use and 
how to pattern them into networks that have some degree 
of randomness without negatively affecting their functional 
characteristics. 

 Simple metals continue to be the material of choice for wires 
and interconnects in the fabrication of electronic devices. The 
power-law relationship known as Rent’s Rule formalized the 
trend between the number of connections in integrated circuit 
designs and the number of internal components, such as logic 
gates, and how these are strongly related to both logical capacity 
and complexity of the interconnect architecture. This relation-
ship infers that the limits on synthetic complex architectures 
lies in the cost of fabrication, with specifi c focus on interconnect 
and wiring strategies. [  31  ,  32  ]  Research has shown that biological 
neural systems also obey this relationship. [  33  ]  Whereas biolog-
ical networks realize a balance of cost and complexity through 
structural self-similarity and hierarchical modularity, ANN 
implementations based on TAM/von Neumann architectures 
remain at the mercy of this “cost of wiring”. While motivating 
the creation of bio-inspired devices, Rent’s Rule further under-
scores the fact that new methods, differing not only in scale but 
also in kind, must be developed to meet these challenges. 

 Solution phase electrochemistry offers an intriguing 
approach to the unconventional fabrication of complex metallic 
structures. In particular, the electroless deposition of various 
metals through the spontaneous reduction of soluble metal 
cations is a mature technology that has been employed exten-
sively in macroscopic plating applications and the manufacture 
of printed circuit boards (PCBs). In contrast to plating appli-
cations, dendritic (fractal) growth processes have been studied 
extensively for various reasons. [  34–36  ]  Unwanted, spontaneous 
growth of dendritic metal protrusions through insulating layers 
has posed an engineering challenge as the resulting electrical 
shorts lead to device failures. In a more positive light, interest 
in these intricate structures generated insightful mechanistic 
models, such as diffusion-limited aggregation (DLA), that were 
3mbH & Co. KGaA, Weinheim wileyonlinelibrary.com
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      Figure  2 .     Fabrication scheme for complex, electronic networks. (a) Schematic of the substrate/device microfabrication through various lithographic 
techniques. (b) Cu seed posts (1  μ m 2 , 1  μ m pitch, 300 nm height) deposited onto the substrate by electron beam lithography react with AgNO 3  within 
a reaction well formed from SU-8 epoxy photoresist, (c) resulting in electroless deposition of complex Ag nanowire networks. (d) The network extends 
throughout the device well and is electrically probed via macroscopic Pt electrodes.  
tested and confi rmed through comparison of simulated struc-
tures to physically produced metallic silver fractals by reducing 
controlled concentrations of Ag  +   using seed metals such as 
copper and zinc. 

 Here, the electroless deposition process has been extended 
to produce devices with complex architectures possessing both 
regular and random features by combining top-down directed 
patterning of seed materials at the microscale with bottom-up 
self-assembly of functional nanomaterials. Lithographic pat-
terns of metallic copper were reacted with dilute solutions 
of silver cations to create complex networks of metallic silver 
nanostructures ( Figure    2  ). Optimization of this process enabled 
the controlled production of structures ranging from extended 
nanowires to dense fractals, similar to biological neural assem-
blies such as axons and dendrites. [  37  ]  Spontaneous generation 
of nanogaps between these as-prepared metallic nanostruc-
tures has been attributed to ionic depletion in the interfacial 
regions, due to the DLA growth mechanism. In addition, the 
formation of nanowire crossbar-like junctions resulted from the 
three-dimensional nature of the solution deposition process. By 
combining this wiring approach with compatible materials that 
demonstrate synaptic properties, we have generated a complex 
network of randomly distributed, highly interconnected inor-
ganic synapses.    

 4. Synthetic Synapses 

 Performing distributed, real-time computation of complex infor-
mation requires suitable electronic device elements capable of 
mimicking salient aspects of biological synapse function at the 
relevant physical scales. Recent research has developed a vast 
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com
catalogue of nonlinear, solid-state electronic elements for use 
in integrated circuits and solid-state memory. A class of these, 
known as hysteretic resistive (memristive) switches, has received 
substantial attention as a synapse-like element for use in next 
generation neuromorphic computers. Resistive switches (RS) 
are two-terminal circuit elements that are distinguished from 
simple resistors by nonlinearities in the relationship between 
current and voltage across their terminals. [  38  ]  These nonlineari-
ties, generically referred to as memristance, can take various 
functional forms, from a smooth dependence on the time inte-
gral of current passed through the device, to discontinuous 
jumps at some threshold value, or combinations thereof. [  39  ]  The 
resultant nonlinear dynamics can produce behaviors typically 
associated with biological neural networks, including long-term 
potentiation, long-term depression, spike timing dependent 
plasticity, and associativity. [  40–43  ]  The basic RS is a nanoscale 
device composed of a metal-insulator-metal (MIM) junction 
that can be fabricated using a variety of materials. 

 An exciting subset of electro-ionic RS known as atomic 
switches exhibit common RS characteristics including pinched 
 I–V  hysteresis and large ON/OFF switching ratios as well as 
more exotic behaviors such as multistate switching in quan-
tized increments of conductance. [  44  ]  The distinguishing feature 
of the atomic switch as compared to other memristive systems 
is its operational mechanism: atomic switches utilize metal fi la-
ment formation/annihilation and a concurrent bias-catalyzed 
phase transition within a solid-state electrolyte metal-insulator-
metal (MIM) interface. One prevalent atomic switch confi gura-
tion employs MIM interfaces of silver and silver sulfi de (Ag 2 S). 
This chalcogenide undergoes a temperature-dependent and 
bias-catalyzed transition from the monoclinic, semiconducting 
 α -Ag 2 S phase (acanthite, 2.5  ×  10  − 3   Ω   − 1 cm  − 1 ) to a body-centered 
mbH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–8
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cubic, metallic  β -Ag 2 S phase (argentite, 1.6  ×  10 3   Ω   − 1 cm  − 1 ). [  45  ]  
The argentite phase has a remarkably high diffusion coeffi cient 
for silver, approximately equal to that of gaseous silver atoms at 
an equivalent temperature and density. Under applied external 
bias, this formulation operates via redox coupled ion migra-
tion of silver ions within the metallic argentite phase. While 
some RS are strictly non-volatile, the Ag-Ag 2 S atomic switch 
exhibits nonlinear, time-dependent conductance that has lead 
to the observation of a number of fascinating synapse-like prop-
erties including short- (volatile) and long- (non-volatile) term 
memory. [  40  ,  43  ]  Robust operation of these devices at rates up to 
1 MHz over 10 5  cycles further enhances their potential applica-
bility as a synthetic synaptic element. 

 To date, atomic switches have been primarily fabricated 
through advanced lithographic methods in regular, crossbar-
type architectures that are promising candidates for nanoscale 
memory applications when operated in isolated, single device 
confi gurations. However, their operational characteristics are 
less well understood when connected in series, parallel, or 
directly coupled through their ionically conductive active layer, 
as would be required to implement computation in the TBTu/
CNR paradigm. Inspired by the exciting synaptic properties of 
the Ag | Ag 2 S | Ag atomic switch confi guration and its and mate-
rial compatibility with our scheme for fabricating complex 
nanowire networks, we have characterized the properties of 
interconnected atomic switches as a means to examine their 
potential applicability as physical implementations of TBTu/
CNR-based computation.   

 5. Critical Atom Switch Networks 

 Complex networks of coupled nonlinear elements commonly 
manifest non-trivial evolution through dynamic system recon-
fi gurations. [  45  ,  46  ]  which enable enhanced maintenance of 
spatiotemporal correlations and maximally effi cient signal prop-
agation. [  17  ]  These features are associated with systems in critical 
states, and are crucial to the proposed implementation of hard-
ware-based TBTu/CNR-inspired machines. We have fabricated 
and examined the operational characteristics of an electroionic 
device composed of a highly interconnected network of inter-
facial atomic switches wired through electroless self-assembly. 
Formation of the complex atomic switch network entailed con-
version of as-prepared metallic nanogap and crossbar-like inter-
faces into metal-insulator-metal (MIM) junctions (Ag | Ag 2 S | Ag) 
through gas phase sulfurization. [  48  ]  Due to the nature of the 
electroless deposition process and resulting random network 
topology, a thorough survey of sulfurization conditions was car-
ried out to optimize the fabrication protocol. 

 Progressing from isolated, individual synthetic synapses to 
an assemblage of electro-ionically coupled units introduces an 
extensive set of collective interactions capable of producing 
emergent behaviors. Spatially distributed atomic switch junc-
tions interact through local variations in ionic concentration 
and electrochemical potential that depend on the combined 
electrical resistance of the entire network and the memory-
dependent state of all other electro-ionically interconnected 
switches. Dynamical complexity is expected given that atomic 
switch synapses are volatile memrsitive systems that exhibit 
© 2011 WILEY-VCH Verlag GmAdv. Mater. 2011, XX, 1–8
a conductance decay time constant dependent on their opera-
tional history. [  43  ,  49  ]  

 To examine these properties, atomic switch networks were 
investigated by  I–V  spectroscopy. In common with isolated 
crossbar-type devices, as-fabricated atomic switch networks 
required an initial forming step during which a sustained, high 
( ∼ 6 V) bias would bring about a large but temporary drop in 
resistance. While parameters of the forming step varied from 
device to device, this requisite step indicates the successful 
preparation of MIM interfaces within the network. After 
forming, slow voltage sweeps (1 V · s  − 1 ) resulted in pinched 
hysteresis curves ( Figure    3  a) with an ON/OFF ratio of 10 3 , 
further validating the formation of a functional atomic switch 
network with behavior analogous to that of a two-terminal RS 
device. Repeatable switching was observed over 10 4  cycles, and 
was successfully operated up to a 1 kHz switching rate. Condi-
tions of no applied bias resulted in a return to the OFF state, 
as expected from the operational mechanism of this particular 
Ag | Ag 2 S | Ag confi guration. Un-sulfurized control devices com-
prised of a purely metallic network demonstrated ohmic  I–V  
characteristics at intermediate voltages ( ± 3 V) followed by irre-
versible breakdown at high bias.  

 To rule out the possibility that network activity was simply 
the result of conductance localization along a dominant 
pathway, creating in essence a single large, serial atomic switch, 
the device was characterized using ultrasensitive IR imaging at 
room temperature (Figure  3 b). These results revealed thermal 
emission from Joule heating throughout the network, indi-
cating distributed and dynamic power dissipation during opera-
tion. Further, the application of spatially-defi ned voltage stimu-
lation enabled controlled activation/deactivation of local regions 
within the network while enhanced overtones in the device fre-
quency response were also observed [  22  ]  as predicted by recently 
reported modeling of current fl ows in random memristor net-
works stimulated with a sinusoidal voltage. [  50  ]  These results col-
lectively indicate the successful formation of an interconnected 
network of nonlinear elements, in this case atomic switches. 

 Emergent behavior was observed during pulsed voltage 
stimulation, in analogy to methods employed in neuroscience 
to probe cortical cultures. Under typical conditions (2 V, 10 ms 
pulses, 10% duty cycle), the current response fl uctuated through 
a wide range of metastable conductance states associated with 
discrete network confi gurations (Figure  3 c–f), as classifi ed by 
residence times in a given state ranging from milliseconds 
(within a single stimulation pulse) to several seconds (across 
hundreds of pulses). Specifi cally, all conductance states whose 
persistence time exceeded that of the measurement bandwidth 
(10 kHz) were designated as temporally metastable. Observa-
tion of both increased and decreased conductivity during stimu-
lation can be attributed to internal network dynamics, as con-
ductance of isolated atomic switches only increases in response 
to sequences of identical stimulation pulses. [  40  ,  43,44  ]  

 Previously unreported current fl uctuations of this kind are 
ascribed to dynamic redistribution of network connectivity 
caused by actions of both individual switches as well as electro-
ionic coupling throughout the shared active layer. Specifi cally, 
formation of a conducting fi lament results in localized deple-
tion of silver cations within the solid electrolyte and thereby 
inhibits the formation of fi laments at nearby MIM interfaces. 
5bH & Co. KGaA, Weinheim wileyonlinelibrary.com
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      Figure  3 .     Electrical characteristics of complex nanoelectro-ionic networks. (a) Experimental  I–V  curve demonstrating pinched hysteresis;  R  ON   =  8 K Ω , 
 R  OFF   >  10 M Ω . (b) Ultrasensitive IR image of a distributed device conductance under external bias at 300 K; electrodes are outlined in white. (c,e) Rep-
resentative experimental network current response to a 2 V pulse showing switching between discrete, metastable conductance states. (d,f) Temporal 
correlation of metastable states observed during pulsed stimulation demonstrated power law scaling for probability, P(D), of metastable state duration. 
Power law scaling existed for residence time both (d) within a single 10 ms pulse and (f) over 2.5 s during extended periods of pulsed stimulation.  
Due to the high diffusion constant of Ag  +   in the  β -Ag 2 S, this 
non-stoichiometric region may extend relatively large distances 
and induce weak electro-ionic coupling even between distant 
switches. Furthermore, concurrent formation and annihilation 
of conductive fi laments will redistribute current fl ow, thereby 
modifying local electrical potentials across the network. These 
local variations sum to produce the observed fl uctuations in 
global network conductance. While direct mechanistic con-
fi rmation of the observed conductance fl uctuations would 
be useful, the inferred mechanism proposed here provides a 
rationale for future optimization of the network architecture. 

 Critical dynamics are of ultimate importance for applications 
of TBTu/CNR-based computation. Indicators of criticality typi-
cally include power-law scaling of 1/ f  fl uctuations and temporal 
metastability. Analysis of the power spectral density of net-
work conductivity in the activated state revealed 1/ f  power law 
scaling over fi ve orders of magnitude. [  22  ]  Electro-ionic coupling 
within the atomic switch network generated metastable con-
ductance states, which were analyzed for temporal correlations. 
Comparing the probability of state duration with its likelihood 
indicated a power law distribution (Figure  3 c–f), indicating a 
diverging temporal correlation length. Observations of both 
spatially distributed electro-ionic activity within the network 
and the long-term persistence of metastable state residence 
times alongside short-term, rapid fl uctuations between many 
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com
available conductance states are strong indicators of critical 
system dynamics during intermittent pulse operation. These 
metastable conductance states represent unique confi gurations 
of the network and infer behavior similar to those of spatiotem-
poral states associated with neural dynamics and those required 
by reservoir computation models.   

 6. Outlook and Perspectives 

 The value of exploring new paradigms in computation cannot 
be overstated, as the challenges of moving “beyond CMOS” 
undoubtedly provide inspiration and motivation for the next 
generation of scientists and engineers. Likewise, elucidating 
the fundamental nature of intelligence remains a question for 
the ages in fi elds spanning all of human endeavor. Drawing 
on a historical perspective of seminal developments in com-
puter science, complex systems theory and neuroscience, we 
have set out to propose a hardware-based approach to neuro-
morphic computation that aims to harness the power of highly 
coupled, nonlinear systems. We feel that the perspectives and 
results described herein represent a potentially important link 
between the requirements for real-time, multi-sensory com-
putation and ongoing advances in neuroscience through a 
readily addressable physical system with collective behaviors 
mbH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–8
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analogous to those currently observed in biological neural 
networks. 

 Research into applications of artifi cial neural networks 
toward biologically inspired computation has been greatly 
facilitated by modern developments in neuroscience. Recent 
fi ndings have shown biological neural networks to operate in a 
persistent critical state, a feature commonly associated with the 
critical point of a second-order phase transition and power law 
scaling of internal system dynamics. [  51,52  ]  Under such circum-
stances, the system correlation length diverges in both space 
and time, indicating that the infl uence of past events decays 
slowly and physically distinct points within the system are 
coupled regardless of the magnitude of separation. Spatiotem-
poral correlations of this type have been shown to maximize 
memory, transmission of information, and adaptability within 
complex networks, such that each part of the system is com-
municating with every other part of the brain, for every time of 
its history. A class of critical systems emerge from coupled net-
works of nonlinear elements governed by threshold dynamics 
that relax quickly compared to a slower external driving force, 
an arrangement that allows these systems to settle into a range 
of correlated metastable states. This model is more than super-
fi cially reminiscent of our current understanding of neural 
dynamics, and has been employed in recent forms of advanced 
neural network research including, but not limited, to reser-
voir methods such as liquid state machines and echo state 
networks. 

 To our knowledge, the self-assembled atomic switch net-
work described here represents a unique implementation of a 
purpose-built electronic device composed of coupled nonlinear 
elements that clearly demonstrates critical dynamics. We pro-
pose that such a system provides a robust, fl exible, and scalable 
experimental platform for controlled examinations of criticality 
and its potential applicability in the fi elds of neuroscience and 
neuromorphic computation. Further, the inherent properties 
of single atomic switches and emergent behaviors observed in 
these complex atomic switch networks indicate a capacity for 
memory and learning via temporally correlated, metastable 
critical states. [  53  ]  Such an approach has potential utility for real-
time, reservoir computation of multi-domain data systems such 
as those used in autonomous locomotion, proximity sensing 
and global positioning as well as a wide variety of sensing 
applications. Technological trends toward the growth of multi-
domain and distributed sensing systems represent the seminal 
challenge for new forms of emerging computation in the cente-
nary of Turing’s birth.  
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